RTT works
This commit is contained in:
		| @@ -0,0 +1,235 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_convolve_1x1_HWC_q7_fast_nonsquare.c | ||||
|  * Description:  Fast Q7 version of 1x1 convolution (non-square shape) | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape) | ||||
|  * @param[in]       Im_in        pointer to input tensor | ||||
|  * @param[in]       dim_im_in_x  input tensor dimention x | ||||
|  * @param[in]       dim_im_in_y  input tensor dimention y | ||||
|  * @param[in]       ch_im_in     number of input tensor channels | ||||
|  * @param[in]       wt           pointer to kernel weights | ||||
|  * @param[in]       ch_im_out    number of filters, i.e., output tensor channels | ||||
|  * @param[in]       dim_kernel_x filter kernel size x | ||||
|  * @param[in]       dim_kernel_y filter kernel size y | ||||
|  * @param[in]       padding_x    padding size x | ||||
|  * @param[in]       padding_y    padding size y | ||||
|  * @param[in]       stride_x     convolution stride x | ||||
|  * @param[in]       stride_y     convolution stride y | ||||
|  * @param[in]       bias         pointer to bias | ||||
|  * @param[in]       bias_shift   amount of left-shift for bias | ||||
|  * @param[in]       out_shift    amount of right-shift for output | ||||
|  * @param[in,out]   Im_out       pointer to output tensor | ||||
|  * @param[in]       dim_im_out_x output tensor dimension x | ||||
|  * @param[in]       dim_im_out_y output tensor dimension y | ||||
|  * @param[in,out]   bufferA      pointer to buffer space for input  | ||||
|  * @param[in,out]   bufferB      pointer to buffer space for output | ||||
|  * @return     The function returns either | ||||
|  * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
|  * | ||||
|  * This function is optimized for convolution with 1x1 kernel size (i.e., dim_kernel_x=1 | ||||
|  * and dim_kernel_y=1). It can be used for the second half of MobileNets [1] after depthwise  | ||||
|  * separable convolution. | ||||
|  * | ||||
|  * This function is the version with full list of optimization tricks, but with | ||||
|  * some contraints: | ||||
|  *   ch_im_in is multiple of 4 | ||||
|  *   ch_im_out is multiple of 2 | ||||
|  * | ||||
|  * [1] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications | ||||
|  * https://arxiv.org/abs/1704.04861 | ||||
|  */ | ||||
|  | ||||
| arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in, | ||||
|                                                   const uint16_t dim_im_in_x, | ||||
|                                                   const uint16_t dim_im_in_y, | ||||
|                                                   const uint16_t ch_im_in, | ||||
|                                                   const q7_t * wt, | ||||
|                                                   const uint16_t ch_im_out, | ||||
|                                                   const uint16_t dim_kernel_x, | ||||
|                                                   const uint16_t dim_kernel_y, | ||||
|                                                   const uint16_t padding_x, | ||||
|                                                   const uint16_t padding_y, | ||||
|                                                   const uint16_t stride_x, | ||||
|                                                   const uint16_t stride_y, | ||||
|                                                   const q7_t * bias, | ||||
|                                                   const uint16_t bias_shift, | ||||
|                                                   const uint16_t out_shift, | ||||
|                                                   q7_t * Im_out, | ||||
|                                                   const uint16_t dim_im_out_x, | ||||
|                                                   const uint16_t dim_im_out_y,  | ||||
|                                                   q15_t * bufferA,  | ||||
|                                                   q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     int16_t   i_out_y, i_out_x; | ||||
|     int16_t   i_ch_out; | ||||
|  | ||||
|     /* ----------------------- | ||||
|      *  Here we use bufferA as q15_t internally as computation are done with q15_t level | ||||
|      *  im2col are done to output in q15_t format from q7_t input | ||||
|      */ | ||||
|  | ||||
|     q15_t    *pBuffer = bufferA; | ||||
|     q7_t     *pOut = Im_out; | ||||
|  | ||||
|     if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1 | ||||
|         || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_out_y * dim_im_in_x + i_out_x) * ch_im_in, pBuffer, | ||||
|                                              ch_im_in); | ||||
|             pBuffer += ch_im_in; | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in, bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* check if there is left-over for compute */ | ||||
|     if (pBuffer != bufferA) | ||||
|     { | ||||
|         const q7_t *pA = wt; | ||||
|         for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++) | ||||
|         { | ||||
|             q31_t     sum = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift); | ||||
|             q15_t    *pB = bufferA; | ||||
|             /* basically each time it process 4 entries */ | ||||
|             uint16_t  colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2; | ||||
|  | ||||
|             while (colCnt) | ||||
|             { | ||||
|  | ||||
|                 q31_t     inA1, inA2; | ||||
|                 q31_t     inB1, inB2; | ||||
|  | ||||
|                 pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2); | ||||
|  | ||||
|                 inB1 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA1, inB1, sum); | ||||
|                 inB2 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA2, inB2, sum); | ||||
|  | ||||
|                 colCnt--; | ||||
|             } | ||||
|             colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3; | ||||
|             while (colCnt) | ||||
|             { | ||||
|                 q7_t      inA1 = *pA++; | ||||
|                 q15_t     inB1 = *pB++; | ||||
|                 sum += inA1 * inB1; | ||||
|                 colCnt--; | ||||
|             } | ||||
|             *pOut = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|             pOut++; | ||||
|  | ||||
|         } | ||||
|  | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
| 		 | ||||
|     int       i, j, k, l, m, n; | ||||
|     int       conv_out; | ||||
|     int       in_row, in_col; | ||||
|  | ||||
|     if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1 | ||||
|         || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i = 0; i < ch_im_out; i++) | ||||
|     { | ||||
|         for (j = 0; j < dim_im_out_y; j++) | ||||
|         { | ||||
|             for (k = 0; k < dim_im_out_x; k++) | ||||
|             { | ||||
|                 conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (m = 0; m < dim_kernel_y; m++) | ||||
|                 { | ||||
|                     for (n = 0; n < dim_kernel_x; n++) | ||||
|                     { | ||||
|                         // if-for implementation | ||||
|                         in_row = stride_y * j + m - padding_y; | ||||
|                         in_col = stride_x * k + n - padding_x; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) | ||||
|                         { | ||||
|                             for (l = 0; l < ch_im_in; l++) | ||||
|                             { | ||||
|                                 conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] * | ||||
|                                     wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_y + n) * ch_im_in + l]; | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,207 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_convolve_HWC_q15_basic.c | ||||
|  * Description:  Q15 version of convolution | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Basic Q15 convolution function | ||||
|    * @param[in]       Im_in       pointer to input tensor | ||||
|    * @param[in]       dim_im_in   input tensor dimention | ||||
|    * @param[in]       ch_im_in    number of input tensor channels | ||||
|    * @param[in]       wt          pointer to kernel weights | ||||
|    * @param[in]       ch_im_out   number of filters, i.e., output tensor channels | ||||
|    * @param[in]       dim_kernel  filter kernel size | ||||
|    * @param[in]       padding     padding sizes | ||||
|    * @param[in]       stride      convolution stride | ||||
|    * @param[in]       bias        pointer to bias | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in,out]   Im_out      pointer to output tensor | ||||
|    * @param[in]       dim_im_out  output tensor dimension | ||||
|    * @param[in,out]   bufferA     pointer to buffer space for input | ||||
|    * @param[in,out]   bufferB     pointer to buffer space for output | ||||
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code>  | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * bufferA size: ch_im_in*dim_kernel*dim_kernel | ||||
|    * | ||||
|    * bufferB size: 0 | ||||
|    * | ||||
|    * This basic version is designed to work for any input tensor and weight | ||||
|    * dimension.  | ||||
|    */ | ||||
|  | ||||
| arm_status | ||||
| arm_convolve_HWC_q15_basic(const q15_t * Im_in, | ||||
|                            const uint16_t dim_im_in, | ||||
|                            const uint16_t ch_im_in, | ||||
|                            const q15_t * wt, | ||||
|                            const uint16_t ch_im_out, | ||||
|                            const uint16_t dim_kernel, | ||||
|                            const uint16_t padding, | ||||
|                            const uint16_t stride, | ||||
|                            const q15_t * bias, | ||||
|                            const uint16_t bias_shift, | ||||
|                            const uint16_t out_shift, | ||||
|                            q15_t * Im_out,  | ||||
|                            const uint16_t dim_im_out,  | ||||
|                            q15_t * bufferA,  | ||||
|                            q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x; | ||||
|  | ||||
|     uint16_t  im2col_out_pixel_index = 0; | ||||
|     q15_t    *pBuffer = bufferA; | ||||
|     q15_t    *pOut = Im_out; | ||||
|     q15_t    *im_buffer = bufferA; | ||||
|     const q15_t *pA; | ||||
|     int       i; | ||||
|  | ||||
|     /* This part implements the im2col function */ | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) | ||||
|         { | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) | ||||
|                     { | ||||
|                         /* Filling 0 for out-of-bound paddings */ | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ | ||||
|                         memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             pA = wt; | ||||
|             for (i = 0; i < ch_im_out; i++) | ||||
|             { | ||||
|                 q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                 q15_t    *pB = im_buffer; | ||||
|                 uint16_t  colCnt = ch_im_in * dim_kernel * dim_kernel >> 2; | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     q31_t     inA1 = *__SIMD32(pA)++; | ||||
|                     q31_t     inB1 = *__SIMD32(pB)++; | ||||
|                     q31_t     inA2 = *__SIMD32(pA)++; | ||||
|                     q31_t     inB2 = *__SIMD32(pB)++; | ||||
|  | ||||
|                     sum = __SMLAD(inA1, inB1, sum); | ||||
|                     sum = __SMLAD(inA2, inB2, sum); | ||||
|  | ||||
|                     colCnt--; | ||||
|                 } | ||||
|                 colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3; | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     q15_t     inA1 = *pA++; | ||||
|                     q15_t     inB1 = *pB++; | ||||
|                     sum += inA1 * inB1; | ||||
|                     colCnt--; | ||||
|                 } | ||||
|                 *pOut = (q15_t) __SSAT((sum >> out_shift), 16); | ||||
|                 pOut++; | ||||
|             } | ||||
|  | ||||
|             /* counter reset */ | ||||
|             pBuffer = im_buffer; | ||||
|             im2col_out_pixel_index++; | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     uint16_t  i, j, k, l, m, n; | ||||
|     int       conv_out; | ||||
|     signed char in_row, in_col; | ||||
|  | ||||
|     for (i = 0; i < ch_im_out; i++) | ||||
|     { | ||||
|         for (j = 0; j < dim_im_out; j++) | ||||
|         { | ||||
|             for (k = 0; k < dim_im_out; k++) | ||||
|             { | ||||
|                 conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (m = 0; m < dim_kernel; m++) | ||||
|                 { | ||||
|                     for (n = 0; n < dim_kernel; n++) | ||||
|                     { | ||||
|                         in_row = stride * j + m - padding; | ||||
|                         in_col = stride * k + n - padding; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) | ||||
|                         { | ||||
|                             for (l = 0; l < ch_im_in; l++) | ||||
|                             { | ||||
|                                 conv_out += | ||||
|                                     Im_in[(in_row * dim_im_in + in_col) * ch_im_in + | ||||
|                                           l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + | ||||
|                                                                                             n) * ch_im_in + l]; | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,255 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_convolve_HWC_q15_fast.c | ||||
|  * Description:  Fast Q15 version of convolution | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Fast Q15 convolution function | ||||
|    * @param[in]       Im_in       pointer to input tensor | ||||
|    * @param[in]       dim_im_in   input tensor dimention | ||||
|    * @param[in]       ch_im_in    number of input tensor channels | ||||
|    * @param[in]       wt          pointer to kernel weights | ||||
|    * @param[in]       ch_im_out   number of filters, i.e., output tensor channels | ||||
|    * @param[in]       dim_kernel  filter kernel size | ||||
|    * @param[in]       padding     padding sizes | ||||
|    * @param[in]       stride      convolution stride | ||||
|    * @param[in]       bias        pointer to bias | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in,out]   Im_out      pointer to output tensor | ||||
|    * @param[in]       dim_im_out  output tensor dimension | ||||
|    * @param[in,out]   bufferA     pointer to buffer space for input  | ||||
|    * @param[in,out]   bufferB     pointer to buffer space for output | ||||
|    * @return     The function returns either | ||||
|    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel | ||||
|    * | ||||
|    * bufferB size: 0 | ||||
|    * | ||||
|    * <b>Input dimension constraints:</b> | ||||
|    * | ||||
|    * ch_im_in is multiple of 2  | ||||
|    * | ||||
|    * ch_im_out is multipe of 2 | ||||
|    * | ||||
|    */ | ||||
|  | ||||
| arm_status | ||||
| arm_convolve_HWC_q15_fast(const q15_t * Im_in, | ||||
|                           const uint16_t dim_im_in, | ||||
|                           const uint16_t ch_im_in, | ||||
|                           const q15_t * wt, | ||||
|                           const uint16_t ch_im_out, | ||||
|                           const uint16_t dim_kernel, | ||||
|                           const uint16_t padding, | ||||
|                           const uint16_t stride, | ||||
|                           const q15_t * bias, | ||||
|                           const uint16_t bias_shift, | ||||
|                           const uint16_t out_shift, | ||||
|                           q15_t * Im_out,  | ||||
|                           const uint16_t dim_im_out,  | ||||
|                           q15_t * bufferA,  | ||||
|                           q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x; | ||||
|  | ||||
|     q15_t    *pBuffer = bufferA; | ||||
|     q15_t    *im_buffer = bufferA; | ||||
|     q15_t    *pOut = Im_out; | ||||
|  | ||||
|     if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     /* This part implements the im2col function */ | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) | ||||
|         { | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ | ||||
|                         memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (i_out_x & 0x1) | ||||
|             { | ||||
|                 int       i; | ||||
|                 /* initialize the matrix pointers for A */ | ||||
|                 const q15_t *pA = wt; | ||||
|  | ||||
|                 /* set up the second output pointers */ | ||||
|                 q15_t    *pOut2 = pOut + ch_im_out; | ||||
|  | ||||
|                 /* this loop over rows in A */ | ||||
|                 for (i = 0; i < ch_im_out; i += 2) | ||||
|                 { | ||||
|                     /* setup pointers for B */ | ||||
|                     q15_t    *pB = im_buffer; | ||||
|                     const q15_t *pB2 = pB + ch_im_in * dim_kernel * dim_kernel; | ||||
|  | ||||
|                     /* aling the second pointer for A */ | ||||
|                     const q15_t *pA2 = pA + ch_im_in * dim_kernel * dim_kernel; | ||||
|  | ||||
|                     /* init the sum with bias */ | ||||
|                     q31_t     sum =  ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                     q31_t     sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                     q31_t     sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); | ||||
|                     q31_t     sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|                     uint16_t  colCnt = ch_im_in * dim_kernel * dim_kernel >> 1; | ||||
|                     /* accumulate over the vector */ | ||||
|                     while (colCnt) | ||||
|                     { | ||||
|                         q31_t     inA1 = *__SIMD32(pA)++; | ||||
|                         q31_t     inB1 = *__SIMD32(pB)++; | ||||
|                         q31_t     inA2 = *__SIMD32(pA2)++; | ||||
|                         q31_t     inB2 = *__SIMD32(pB2)++; | ||||
|  | ||||
|                         sum = __SMLAD(inA1, inB1, sum); | ||||
|                         sum2 = __SMLAD(inA1, inB2, sum2); | ||||
|                         sum3 = __SMLAD(inA2, inB1, sum3); | ||||
|                         sum4 = __SMLAD(inA2, inB2, sum4); | ||||
|  | ||||
|                         colCnt--; | ||||
|                     }           /* while over colCnt */ | ||||
|                     colCnt = ch_im_in * dim_kernel * dim_kernel & 0x1; | ||||
|                     while (colCnt) | ||||
|                     { | ||||
|                         q15_t     inA1 = *pA++; | ||||
|                         q15_t     inB1 = *pB++; | ||||
|                         q15_t     inA2 = *pA2++; | ||||
|                         q15_t     inB2 = *pB2++; | ||||
|  | ||||
|                         sum += inA1 * inB1; | ||||
|                         sum2 += inA1 * inB2; | ||||
|                         sum3 += inA2 * inB1; | ||||
|                         sum4 += inA2 * inB2; | ||||
|                         colCnt--; | ||||
|                     }           /* while over colCnt */ | ||||
|                     *pOut++ = (q15_t) __SSAT(sum >> out_shift, 16); | ||||
|                     *pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16); | ||||
|                     *pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16); | ||||
|                     *pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16); | ||||
|  | ||||
|                     /* skip the row computed with A2 */ | ||||
|                     pA += ch_im_in * dim_kernel * dim_kernel; | ||||
|                 }               /* for over ch_im_out */ | ||||
|  | ||||
|                 pOut += ch_im_out; | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = im_buffer; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     uint16_t  i, j, k, l, m, n; | ||||
|     int       conv_out; | ||||
|     signed char in_row, in_col; | ||||
|  | ||||
|     if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i = 0; i < ch_im_out; i++) | ||||
|     { | ||||
|         for (j = 0; j < dim_im_out; j++) | ||||
|         { | ||||
|             for (k = 0; k < dim_im_out; k++) | ||||
|             { | ||||
|                 conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (m = 0; m < dim_kernel; m++) | ||||
|                 { | ||||
|                     for (n = 0; n < dim_kernel; n++) | ||||
|                     { | ||||
|                         in_row = stride * j + m - padding; | ||||
|                         in_col = stride * k + n - padding; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) | ||||
|                         { | ||||
|                             for (l = 0; l < ch_im_in; l++) | ||||
|                             { | ||||
|                                 conv_out += | ||||
|                                     Im_in[(in_row * dim_im_in + in_col) * ch_im_in + | ||||
|                                           l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + | ||||
|                                                                                             n) * ch_im_in + l]; | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,265 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_convolve_HWC_q15_fast.c | ||||
|  * Description:  Fast Q15 version of convolution | ||||
|  * | ||||
|  * $Date:        24. May 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Fast Q15 convolution function (non-sqaure shape) | ||||
|    * @param[in]       Im_in        pointer to input tensor | ||||
|    * @param[in]       dim_im_in_x  input tensor dimention x | ||||
|    * @param[in]       dim_im_in_y  input tensor dimention y | ||||
|    * @param[in]       ch_im_in     number of input tensor channels | ||||
|    * @param[in]       wt           pointer to kernel weights | ||||
|    * @param[in]       ch_im_out    number of filters, i.e., output tensor channels | ||||
|    * @param[in]       dim_kernel_x filter kernel size x | ||||
|    * @param[in]       dim_kernel_y filter kernel size y | ||||
|    * @param[in]       padding_x    padding size x | ||||
|    * @param[in]       padding_y    padding size y | ||||
|    * @param[in]       stride_x     convolution stride x | ||||
|    * @param[in]       stride_y     convolution stride y | ||||
|    * @param[in]       bias         pointer to bias | ||||
|    * @param[in]       bias_shift   amount of left-shift for bias | ||||
|    * @param[in]       out_shift    amount of right-shift for output | ||||
|    * @param[in,out]   Im_out       pointer to output tensor | ||||
|    * @param[in]       dim_im_out_x output tensor dimension x | ||||
|    * @param[in]       dim_im_out_y output tensor dimension y | ||||
|    * @param[in,out]   bufferA      pointer to buffer space for input  | ||||
|    * @param[in,out]   bufferB      pointer to buffer space for output | ||||
|    * @return     The function returns either | ||||
|    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel | ||||
|    * | ||||
|    * bufferB size: 0 | ||||
|    * | ||||
|    * <b>Input dimension constraints:</b> | ||||
|    * | ||||
|    * ch_im_in is multiple of 2  | ||||
|    * | ||||
|    * ch_im_out is multipe of 2 | ||||
|    * | ||||
|    */ | ||||
|  | ||||
| arm_status | ||||
| arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in, | ||||
|                                     const uint16_t dim_im_in_x, | ||||
|                                     const uint16_t dim_im_in_y, | ||||
|                                     const uint16_t ch_im_in, | ||||
|                                     const q15_t * wt, | ||||
|                                     const uint16_t ch_im_out, | ||||
|                                     const uint16_t dim_kernel_x, | ||||
|                                     const uint16_t dim_kernel_y, | ||||
|                                     const uint16_t padding_x, | ||||
|                                     const uint16_t padding_y, | ||||
|                                     const uint16_t stride_x, | ||||
|                                     const uint16_t stride_y, | ||||
|                                     const q15_t * bias, | ||||
|                                     const uint16_t bias_shift, | ||||
|                                     const uint16_t out_shift, | ||||
|                                     q15_t * Im_out, | ||||
|                                     const uint16_t dim_im_out_x, | ||||
|                                     const uint16_t dim_im_out_y,  | ||||
|                                     q15_t * bufferA,  | ||||
|                                     q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x; | ||||
|  | ||||
|     q15_t    *pBuffer = bufferA; | ||||
|     q15_t    *im_buffer = bufferA; | ||||
|     q15_t    *pOut = Im_out; | ||||
|  | ||||
|     if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     /* This part implements the im2col function */ | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) | ||||
|         { | ||||
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ | ||||
|                         memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (i_out_x & 0x1) | ||||
|             { | ||||
|                 int       i; | ||||
|                 /* initialize the matrix pointers for A */ | ||||
|                 const q15_t *pA = wt; | ||||
|  | ||||
|                 /* set up the second output pointers */ | ||||
|                 q15_t    *pOut2 = pOut + ch_im_out; | ||||
|  | ||||
|                 /* this loop over rows in A */ | ||||
|                 for (i = 0; i < ch_im_out; i += 2) | ||||
|                 { | ||||
|                     /* setup pointers for B */ | ||||
|                     q15_t    *pB = im_buffer; | ||||
|                     const q15_t *pB2 = pB + ch_im_in * dim_kernel_y * dim_kernel_x; | ||||
|  | ||||
|                     /* aling the second pointer for A */ | ||||
|                     const q15_t *pA2 = pA + ch_im_in * dim_kernel_y * dim_kernel_x; | ||||
|  | ||||
|                     /* init the sum with bias */ | ||||
|                     q31_t     sum =  ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                     q31_t     sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                     q31_t     sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); | ||||
|                     q31_t     sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|                     uint16_t  colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 1; | ||||
|                     /* accumulate over the vector */ | ||||
|                     while (colCnt) | ||||
|                     { | ||||
|                         q31_t     inA1 = *__SIMD32(pA)++; | ||||
|                         q31_t     inB1 = *__SIMD32(pB)++; | ||||
|                         q31_t     inA2 = *__SIMD32(pA2)++; | ||||
|                         q31_t     inB2 = *__SIMD32(pB2)++; | ||||
|  | ||||
|                         sum = __SMLAD(inA1, inB1, sum); | ||||
|                         sum2 = __SMLAD(inA1, inB2, sum2); | ||||
|                         sum3 = __SMLAD(inA2, inB1, sum3); | ||||
|                         sum4 = __SMLAD(inA2, inB2, sum4); | ||||
|  | ||||
|                         colCnt--; | ||||
|                     }           /* while over colCnt */ | ||||
|                     colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x1; | ||||
|                     while (colCnt) | ||||
|                     { | ||||
|                         q15_t     inA1 = *pA++; | ||||
|                         q15_t     inB1 = *pB++; | ||||
|                         q15_t     inA2 = *pA2++; | ||||
|                         q15_t     inB2 = *pB2++; | ||||
|  | ||||
|                         sum += inA1 * inB1; | ||||
|                         sum2 += inA1 * inB2; | ||||
|                         sum3 += inA2 * inB1; | ||||
|                         sum4 += inA2 * inB2; | ||||
|                         colCnt--; | ||||
|                     }           /* while over colCnt */ | ||||
|                     *pOut++ = (q15_t) __SSAT(sum >> out_shift, 16); | ||||
|                     *pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16); | ||||
|                     *pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16); | ||||
|                     *pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16); | ||||
|  | ||||
|                     /* skip the row computed with A2 */ | ||||
|                     pA += ch_im_in * dim_kernel_y * dim_kernel_x; | ||||
|                 }               /* for over ch_im_out */ | ||||
|  | ||||
|                 pOut += ch_im_out; | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = im_buffer; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     uint16_t  i, j, k, l, m, n; | ||||
|     int       conv_out; | ||||
|     signed char in_row, in_col; | ||||
|  | ||||
|     if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i = 0; i < ch_im_out; i++) | ||||
|     { | ||||
|         for (j = 0; j < dim_im_out_y; j++) | ||||
|         { | ||||
|             for (k = 0; k < dim_im_out_x; k++) | ||||
|             { | ||||
|                 conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (m = 0; m < dim_kernel_y; m++) | ||||
|                 { | ||||
|                     for (n = 0; n < dim_kernel_x; n++) | ||||
|                     { | ||||
|                         in_row = stride_y * j + m - padding_y; | ||||
|                         in_col = stride_x * k + n - padding_x; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) | ||||
|                         { | ||||
|                             for (l = 0; l < ch_im_in; l++) | ||||
|                             { | ||||
|                                 conv_out += | ||||
|                                     Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + | ||||
|                                           l] * wt[i * ch_im_in * dim_kernel_x * dim_kernel_y + (m * dim_kernel_x + | ||||
|                                                                                             n) * ch_im_in + l]; | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,279 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_convolve_HWC_q7_RGB.c | ||||
|  * Description:  Q7 version of convolution for RGB image | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Q7 convolution function for RGB image | ||||
|    * @param[in]       Im_in       pointer to input tensor | ||||
|    * @param[in]       dim_im_in   input tensor dimention | ||||
|    * @param[in]       ch_im_in    number of input tensor channels | ||||
|    * @param[in]       wt          pointer to kernel weights | ||||
|    * @param[in]       ch_im_out   number of filters, i.e., output tensor channels | ||||
|    * @param[in]       dim_kernel  filter kernel size | ||||
|    * @param[in]       padding     padding sizes | ||||
|    * @param[in]       stride      convolution stride | ||||
|    * @param[in]       bias        pointer to bias | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in,out]   Im_out      pointer to output tensor | ||||
|    * @param[in]       dim_im_out  output tensor dimension | ||||
|    * @param[in,out]   bufferA     pointer to buffer space for input | ||||
|    * @param[in,out]   bufferB     pointer to buffer space for output | ||||
|    * @return     The function returns either | ||||
|    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel | ||||
|    * | ||||
|    * bufferB size: 0 | ||||
|    * | ||||
|    * <b>Input dimension constraints:</b> | ||||
|    * | ||||
|    * ch_im_in equals 3 | ||||
|    * | ||||
|    * This kernel is written exclusively for convolution with ch_im_in | ||||
|    * equals 3. This applies on the first layer of CNNs which has input | ||||
|    * image with RGB format. | ||||
|    */ | ||||
|  | ||||
| arm_status | ||||
| arm_convolve_HWC_q7_RGB(const q7_t * Im_in, | ||||
|                         const uint16_t dim_im_in, | ||||
|                         const uint16_t ch_im_in, | ||||
|                         const q7_t * wt, | ||||
|                         const uint16_t ch_im_out, | ||||
|                         const uint16_t dim_kernel, | ||||
|                         const uint16_t padding, | ||||
|                         const uint16_t stride, | ||||
|                         const q7_t * bias, | ||||
|                         const uint16_t bias_shift, | ||||
|                         const uint16_t out_shift, | ||||
|                         q7_t * Im_out, const uint16_t dim_im_out, q15_t * bufferA, q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|     int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x; | ||||
|  | ||||
|     /* | ||||
|      *  Here we use bufferA as q15_t internally as computation are done with q15_t level | ||||
|      *  im2col are done to output in q15_t format from q7_t input | ||||
|      */ | ||||
|     q15_t    *pBuffer = bufferA; | ||||
|     q7_t     *pOut = Im_out; | ||||
|  | ||||
|     // check if number of input channels is 3 | ||||
|     if (ch_im_in != 3) | ||||
|     { | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|     // This part implements the im2col function | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) | ||||
|         { | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) | ||||
|                     { | ||||
|                         /* Equivalent to arm_fill_q15(0, pBuffer, ch_im_in) with assumption: ch_im_in = 3 */ | ||||
|                         *__SIMD32(pBuffer) = 0x0; | ||||
|                         *(pBuffer + 2) = 0; | ||||
|                         pBuffer += 3; | ||||
|                     } else | ||||
|                     { | ||||
|                         /*  | ||||
|                          * Equivalent to: | ||||
|                          *  arm_q7_to_q15_no_shift( (q7_t*)Im_in+(i_ker_y*dim_im_in+i_ker_x)*3, pBuffer, 3); | ||||
|                          */ | ||||
|  | ||||
|                         const q7_t *pPixel = Im_in + (i_ker_y * dim_im_in + i_ker_x) * 3; | ||||
|                         q31_t     buf = *__SIMD32(pPixel); | ||||
|  | ||||
|                         union arm_nnword top; | ||||
|                         union arm_nnword bottom; | ||||
|  | ||||
|                         top.word = __SXTB16(buf); | ||||
|                         bottom.word = __SXTB16(__ROR(buf, 8)); | ||||
|  | ||||
| #ifndef ARM_MATH_BIG_ENDIAN | ||||
|                         /* | ||||
|                          *  little-endian, | omit | 3rd  | 2nd  | 1st  | | ||||
|                          *                MSB                         LSB | ||||
|                          *   top | 3rd | 1st |; bottom | omit | 2nd | | ||||
|                          * | ||||
|                          *  version 1, need to swap 2nd and 3rd weight | ||||
|                          * *__SIMD32(pBuffer) = top.word; | ||||
|                          * *(pBuffer+2) = bottom.half_words[0]; | ||||
|                          * | ||||
|                          *  version 2, no weight shuffling required | ||||
|                          */ | ||||
|                         *pBuffer++ = top.half_words[0]; | ||||
|                         *__SIMD32(pBuffer) = __PKHBT(bottom.word, top.word, 0); | ||||
| #else | ||||
|                         /* | ||||
|                          *  big-endian,    | 1st  | 2nd  | 3rd  | omit |  | ||||
|                          *                MSB                         LSB | ||||
|                          *  top | 2nd | omit |; bottom | 1st | 3rd | | ||||
|                          *  | ||||
|                          *  version 1, need to swap 2nd and 3rd weight | ||||
|                          * *__SIMD32(pBuffer) = bottom.word; | ||||
|                          * *(pBuffer+2) = top.half_words[1]; | ||||
|                          *  | ||||
|                          *  version 2, no weight shuffling required | ||||
|                          */ | ||||
|                         *pBuffer++ = bottom.half_words[0]; | ||||
|                         *__SIMD32(pBuffer) = __PKHTB(top.word, bottom.word, 0); | ||||
| #endif | ||||
|                         pBuffer += 2; | ||||
|                     } | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * 3 * dim_kernel * dim_kernel) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15(wt, bufferA, | ||||
|                                                   ch_im_out, | ||||
|                                                   3 * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); | ||||
|  | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* left-over because odd number of output pixels */ | ||||
|     if (pBuffer != bufferA) | ||||
|     { | ||||
|         const q7_t *pA = wt; | ||||
|         int       i; | ||||
|  | ||||
|         for (i = 0; i < ch_im_out; i++) | ||||
|         { | ||||
|             q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|             q15_t    *pB = bufferA; | ||||
|             /* basically each time it process 4 entries */ | ||||
|             uint16_t  colCnt = 3 * dim_kernel * dim_kernel >> 2; | ||||
|  | ||||
|             while (colCnt) | ||||
|             { | ||||
|  | ||||
|                 q31_t     inA1, inA2; | ||||
|                 q31_t     inB1, inB2; | ||||
|  | ||||
|                 pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2); | ||||
|  | ||||
|                 inB1 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA1, inB1, sum); | ||||
|                 inB2 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA2, inB2, sum); | ||||
|  | ||||
|                 colCnt--; | ||||
|             } | ||||
|             colCnt = 3 * dim_kernel * dim_kernel & 0x3; | ||||
|             while (colCnt) | ||||
|             { | ||||
|                 q7_t      inA1 = *pA++; | ||||
|                 q15_t     inB1 = *pB++; | ||||
|                 sum += inA1 * inB1; | ||||
|                 colCnt--; | ||||
|             } | ||||
|             *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|         } | ||||
|     } | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|  | ||||
|     uint16_t  i, j, k, l, m, n; | ||||
|     int       conv_out; | ||||
|     signed char in_row, in_col; | ||||
|  | ||||
|     // check if number of input channels is 3 | ||||
|     if (ch_im_in != 3) | ||||
|     { | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i = 0; i < ch_im_out; i++) | ||||
|     { | ||||
|         for (j = 0; j < dim_im_out; j++) | ||||
|         { | ||||
|             for (k = 0; k < dim_im_out; k++) | ||||
|             { | ||||
|                 conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (m = 0; m < dim_kernel; m++) | ||||
|                 { | ||||
|                     for (n = 0; n < dim_kernel; n++) | ||||
|                     { | ||||
|                         /* if-for implementation */ | ||||
|                         in_row = stride * j + m - padding; | ||||
|                         in_col = stride * k + n - padding; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) | ||||
|                         { | ||||
|                             for (l = 0; l < ch_im_in; l++) | ||||
|                             { | ||||
|                                 conv_out += | ||||
|                                     Im_in[(in_row * dim_im_in + in_col) * ch_im_in + | ||||
|                                           l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + | ||||
|                                                                                             n) * ch_im_in + l]; | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return (ARM_MATH_SUCCESS); | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,230 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_convolve_HWC_q7_basic.c | ||||
|  * Description:	 Q7 version of convolution | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Basic Q7 convolution function | ||||
|    * @param[in]       Im_in       pointer to input tensor | ||||
|    * @param[in]       dim_im_in   input tensor dimention | ||||
|    * @param[in]       ch_im_in    number of input tensor channels | ||||
|    * @param[in]       wt          pointer to kernel weights | ||||
|    * @param[in]       ch_im_out   number of filters, i.e., output tensor channels | ||||
|    * @param[in]       dim_kernel  filter kernel size | ||||
|    * @param[in]       padding     padding sizes | ||||
|    * @param[in]       stride      convolution stride | ||||
|    * @param[in]       bias        pointer to bias | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in,out]   Im_out      pointer to output tensor | ||||
|    * @param[in]       dim_im_out  output tensor dimension | ||||
|    * @param[in,out]   bufferA     pointer to buffer space for input  | ||||
|    * @param[in,out]   bufferB     pointer to buffer space for output | ||||
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code>  | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel | ||||
|    * | ||||
|    * bufferB size: 0 | ||||
|    * | ||||
|    * This basic version is designed to work for any input tensor and weight | ||||
|    * dimension.  | ||||
|    */ | ||||
|  | ||||
| arm_status | ||||
| arm_convolve_HWC_q7_basic(const q7_t * Im_in, | ||||
|                           const uint16_t dim_im_in, | ||||
|                           const uint16_t ch_im_in, | ||||
|                           const q7_t * wt, | ||||
|                           const uint16_t ch_im_out, | ||||
|                           const uint16_t dim_kernel, | ||||
|                           const uint16_t padding, | ||||
|                           const uint16_t stride, | ||||
|                           const q7_t * bias, | ||||
|                           const uint16_t bias_shift, | ||||
|                           const uint16_t out_shift, | ||||
|                           q7_t * Im_out,  | ||||
|                           const uint16_t dim_im_out,  | ||||
|                           q15_t * bufferA,  | ||||
|                           q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x; | ||||
|  | ||||
|     /*  | ||||
|      *  Here we use bufferA as q15_t internally as computation are done with q15_t level | ||||
|      *  im2col are done to output in q15_t format from q7_t input | ||||
|      */ | ||||
|     q15_t    *pBuffer = bufferA; | ||||
|     q7_t     *pOut = Im_out; | ||||
|  | ||||
|     /* This part implements the im2col function */ | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) | ||||
|         { | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) | ||||
|                     { | ||||
|                         /* Filling 0 for out-of-bound paddings */ | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         /* Copying the pixel data to column */ | ||||
|                         arm_q7_to_q15_no_shift((q7_t *) | ||||
|                                                Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             /* Computation is filed for every 2 columns */ | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15(wt, bufferA, | ||||
|                                                   ch_im_out, | ||||
|                                                   ch_im_in * | ||||
|                                                   dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); | ||||
|  | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* left-over because odd number of output pixels */ | ||||
|     if (pBuffer != bufferA) | ||||
|     { | ||||
|         const q7_t *pA = wt; | ||||
|         int       i; | ||||
|  | ||||
|         for (i = 0; i < ch_im_out; i++) | ||||
|         { | ||||
|             /* Load the accumulator with bias first */ | ||||
|             q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|             /* Point to the beging of the im2col buffer */ | ||||
|             q15_t    *pB = bufferA; | ||||
|  | ||||
|             /* Each time it process 4 entries */ | ||||
|             uint16_t  colCnt = ch_im_in * dim_kernel * dim_kernel >> 2; | ||||
|  | ||||
|             while (colCnt) | ||||
|             { | ||||
|                 q31_t     inA1, inA2; | ||||
|                 q31_t     inB1, inB2; | ||||
|  | ||||
|                 pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2); | ||||
|  | ||||
|                 inB1 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA1, inB1, sum); | ||||
|                 inB2 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA2, inB2, sum); | ||||
|  | ||||
|                 colCnt--; | ||||
|             } | ||||
|             colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3; | ||||
|             while (colCnt) | ||||
|             { | ||||
|                 q7_t      inA1 = *pA++; | ||||
|                 q15_t     inB1 = *pB++; | ||||
|                 sum += inA1 * inB1; | ||||
|                 colCnt--; | ||||
|             } | ||||
|             *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|         } | ||||
|     } | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|  | ||||
|     uint16_t  i, j, k, l, m, n; | ||||
|     int       conv_out; | ||||
|     signed char in_row, in_col; | ||||
|  | ||||
|     for (i = 0; i < ch_im_out; i++) | ||||
|     { | ||||
|         for (j = 0; j < dim_im_out; j++) | ||||
|         { | ||||
|             for (k = 0; k < dim_im_out; k++) | ||||
|             { | ||||
|                 conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (m = 0; m < dim_kernel; m++) | ||||
|                 { | ||||
|                     for (n = 0; n < dim_kernel; n++) | ||||
|                     { | ||||
|                         // if-for implementation | ||||
|                         in_row = stride * j + m - padding; | ||||
|                         in_col = stride * k + n - padding; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) | ||||
|                         { | ||||
|                             for (l = 0; l < ch_im_in; l++) | ||||
|                             { | ||||
|                                 conv_out += | ||||
|                                     Im_in[(in_row * dim_im_in + in_col) * ch_im_in + | ||||
|                                           l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + | ||||
|                                                                                             n) * ch_im_in + l]; | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,228 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_convolve_HWC_q7_basic.c | ||||
|  * Description:	 Q7 version of convolution | ||||
|  * | ||||
|  * $Date:        13. July 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Basic Q7 convolution function (non-sqaure shape) | ||||
|    * @param[in]       Im_in        pointer to input tensor | ||||
|    * @param[in]       dim_im_in_x  input tensor dimention x | ||||
|    * @param[in]       dim_im_in_y  input tensor dimention y | ||||
|    * @param[in]       ch_im_in     number of input tensor channels | ||||
|    * @param[in]       wt           pointer to kernel weights | ||||
|    * @param[in]       ch_im_out    number of filters, i.e., output tensor channels | ||||
|    * @param[in]       dim_kernel_x filter kernel size x | ||||
|    * @param[in]       dim_kernel_y filter kernel size y | ||||
|    * @param[in]       padding_x    padding size x | ||||
|    * @param[in]       padding_y    padding size y | ||||
|    * @param[in]       stride_x     convolution stride x | ||||
|    * @param[in]       stride_y     convolution stride y | ||||
|    * @param[in]       bias         pointer to bias | ||||
|    * @param[in]       bias_shift   amount of left-shift for bias | ||||
|    * @param[in]       out_shift    amount of right-shift for output | ||||
|    * @param[in,out]   Im_out       pointer to output tensor | ||||
|    * @param[in]       dim_im_out_x output tensor dimension x | ||||
|    * @param[in]       dim_im_out_y output tensor dimension y | ||||
|    * @param[in,out]   bufferA      pointer to buffer space for input | ||||
|    * @param[in,out]   bufferB      pointer to buffer space for output | ||||
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code> | ||||
|    */ | ||||
|  | ||||
| arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in, | ||||
|                                                const uint16_t dim_im_in_x, | ||||
|                                                const uint16_t dim_im_in_y, | ||||
|                                                const uint16_t ch_im_in, | ||||
|                                                const q7_t * wt, | ||||
|                                                const uint16_t ch_im_out, | ||||
|                                                const uint16_t dim_kernel_x, | ||||
|                                                const uint16_t dim_kernel_y, | ||||
|                                                const uint16_t padding_x, | ||||
|                                                const uint16_t padding_y, | ||||
|                                                const uint16_t stride_x, | ||||
|                                                const uint16_t stride_y, | ||||
|                                                const q7_t * bias, | ||||
|                                                const uint16_t bias_shift, | ||||
|                                                const uint16_t out_shift, | ||||
|                                                q7_t * Im_out, | ||||
|                                                const uint16_t dim_im_out_x, | ||||
|                                                const uint16_t dim_im_out_y, | ||||
|                                                q15_t * bufferA, | ||||
|                                                q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x; | ||||
|  | ||||
|     /*  | ||||
|      *  Here we use bufferA as q15_t internally as computation are done with q15_t level | ||||
|      *  im2col are done to output in q15_t format from q7_t input | ||||
|      */ | ||||
|     q15_t    *pBuffer = bufferA; | ||||
|     q7_t     *pOut = Im_out; | ||||
|  | ||||
|     /* This part implements the im2col function */ | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) | ||||
|         { | ||||
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) | ||||
|                     { | ||||
|                         /* Filling 0 for out-of-bound paddings */ | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         /* Copying the pixel data to column */ | ||||
|                         arm_q7_to_q15_no_shift((q7_t *) | ||||
|                                                Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             /* Computation is filed for every 2 columns */ | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_y * dim_kernel_x) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15(wt, bufferA, | ||||
|                                                   ch_im_out, | ||||
|                                                   ch_im_in * | ||||
|                                                   dim_kernel_y * dim_kernel_x, bias_shift, out_shift, bias, pOut); | ||||
|  | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* left-over because odd number of output pixels */ | ||||
|     if (pBuffer != bufferA) | ||||
|     { | ||||
|         const q7_t *pA = wt; | ||||
|         int       i; | ||||
|  | ||||
|         for (i = 0; i < ch_im_out; i++) | ||||
|         { | ||||
|             /* Load the accumulator with bias first */ | ||||
|             q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|             /* Point to the beging of the im2col buffer */ | ||||
|             q15_t    *pB = bufferA; | ||||
|  | ||||
|             /* Each time it process 4 entries */ | ||||
|             uint16_t  colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 2; | ||||
|  | ||||
|             while (colCnt) | ||||
|             { | ||||
|                 q31_t     inA1, inA2; | ||||
|                 q31_t     inB1, inB2; | ||||
|  | ||||
|                 pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2); | ||||
|  | ||||
|                 inB1 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA1, inB1, sum); | ||||
|                 inB2 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA2, inB2, sum); | ||||
|  | ||||
|                 colCnt--; | ||||
|             } | ||||
|             colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3; | ||||
|             while (colCnt) | ||||
|             { | ||||
|                 q7_t      inA1 = *pA++; | ||||
|                 q15_t     inB1 = *pB++; | ||||
|                 sum += inA1 * inB1; | ||||
|                 colCnt--; | ||||
|             } | ||||
|             *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|         } | ||||
|     } | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|  | ||||
|     uint16_t  i, j, k, l, m, n; | ||||
|     int       conv_out; | ||||
|     signed char in_row, in_col; | ||||
|  | ||||
|     for (i = 0; i < ch_im_out; i++) | ||||
|     { | ||||
|         for (j = 0; j < dim_im_out_y; j++) | ||||
|         { | ||||
|             for (k = 0; k < dim_im_out_x; k++) | ||||
|             { | ||||
|                 conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (m = 0; m < dim_kernel_y; m++) | ||||
|                 { | ||||
|                     for (n = 0; n < dim_kernel_x; n++) | ||||
|                     { | ||||
|                         // if-for implementation | ||||
|                         in_row = stride_y * j + m - padding_y; | ||||
|                         in_col = stride_x * k + n - padding_x; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) | ||||
|                         { | ||||
|                             for (l = 0; l < ch_im_in; l++) | ||||
|                             { | ||||
|                                 conv_out += | ||||
|                                     Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *  | ||||
|                                          wt[i * ch_im_in * dim_kernel_y * dim_kernel_x +  | ||||
|                                          (m * dim_kernel_x + n) * ch_im_in + l]; | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,408 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_convolve_HWC_q7_fast.c | ||||
|  * Description:  Fast Q7 version of convolution | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Fast Q7 convolution function | ||||
|    * @param[in]       Im_in       pointer to input tensor | ||||
|    * @param[in]       dim_im_in   input tensor dimention | ||||
|    * @param[in]       ch_im_in    number of input tensor channels | ||||
|    * @param[in]       wt          pointer to kernel weights | ||||
|    * @param[in]       ch_im_out   number of filters, i.e., output tensor channels | ||||
|    * @param[in]       dim_kernel  filter kernel size | ||||
|    * @param[in]       padding     padding sizes | ||||
|    * @param[in]       stride      convolution stride | ||||
|    * @param[in]       bias        pointer to bias | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in,out]   Im_out      pointer to output tensor | ||||
|    * @param[in]       dim_im_out  output tensor dimension | ||||
|    * @param[in,out]   bufferA     pointer to buffer space for input  | ||||
|    * @param[in,out]   bufferB     pointer to buffer space for output | ||||
|    * @return     The function returns either | ||||
|    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel | ||||
|    * | ||||
|    * bufferB size: 0 | ||||
|    * | ||||
|    * <b>Input dimension constraints:</b> | ||||
|    * | ||||
|    * ch_im_in is multiple of 4    ( because of the SIMD32 read and swap ) | ||||
|    * | ||||
|    * ch_im_out is multipe of 2    ( bacause 2x2 mat_mult kernel ) | ||||
|    * | ||||
|    * The im2col converts the Q7 tensor input into Q15 column, which is stored in | ||||
|    * bufferA. There is reordering happenning during this im2col process with | ||||
|    * arm_q7_to_q15_reordered_no_shift. For every four elements, the second and | ||||
|    * third elements are swapped.  | ||||
|    * | ||||
|    * The computation kernel arm_nn_mat_mult_kernel_q7_q15_reordered does the | ||||
|    * GEMM computation with the reordered columns. | ||||
|    * | ||||
|    * To speed-up the determination of the padding condition, we split the | ||||
|    * computation into 3x3 parts, i.e., {top, mid, bottom} X {left, mid, right}. | ||||
|    * This reduces the total number of boundary condition checks and improves | ||||
|    * the data copying performance. | ||||
|    */ | ||||
|  | ||||
| arm_status | ||||
| arm_convolve_HWC_q7_fast(const q7_t * Im_in, | ||||
|                          const uint16_t dim_im_in, | ||||
|                          const uint16_t ch_im_in, | ||||
|                          const q7_t * wt, | ||||
|                          const uint16_t ch_im_out, | ||||
|                          const uint16_t dim_kernel, | ||||
|                          const uint16_t padding, | ||||
|                          const uint16_t stride, | ||||
|                          const q7_t * bias, | ||||
|                          const uint16_t bias_shift, | ||||
|                          const uint16_t out_shift, | ||||
|                          q7_t * Im_out,  | ||||
|                          const uint16_t dim_im_out,  | ||||
|                          q15_t * bufferA,  | ||||
|                          q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x; | ||||
|  | ||||
|     /* | ||||
|      *  Here we use bufferA as q15_t internally as computation are done with q15_t level | ||||
|      *  im2col are done to output in q15_t format from q7_t input | ||||
|      */ | ||||
|  | ||||
|     q15_t    *pBuffer = bufferA; | ||||
|     q7_t     *pOut = Im_out; | ||||
|  | ||||
|     if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     /* | ||||
|      *  Here we split the entire matrix into three regions depending on the padding situation | ||||
|      *    Top: i_out_y from 0 to padding - 1 | ||||
|      * Middle: i_out_y from padding to dim_im_out-padding-1 | ||||
|      * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1 | ||||
|      */ | ||||
|  | ||||
|     /* top part */ | ||||
|     for (i_out_y = 0; i_out_y < padding; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         arm_q7_to_q15_reordered_no_shift | ||||
|                             ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, | ||||
|                                                             bufferA, | ||||
|                                                             ch_im_out, | ||||
|                                                             ch_im_in | ||||
|                                                             * | ||||
|                                                             dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* middle part, here we also divide the x into left, mid and right */ | ||||
|     for (; i_out_y < dim_im_out - padding; i_out_y++) | ||||
|     { | ||||
|  | ||||
|         /* left part */ | ||||
|         for (i_out_x = 0; i_out_x < padding; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_x < 0 || i_ker_x >= dim_im_in) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         arm_q7_to_q15_reordered_no_shift | ||||
|                             ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, | ||||
|                                                             bufferA, | ||||
|                                                             ch_im_out, | ||||
|                                                             ch_im_in | ||||
|                                                             * | ||||
|                                                             dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         /* mid part */ | ||||
|         for (; i_out_x < dim_im_out - padding; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in | ||||
|                                                  + | ||||
|                                                  (i_ker_y * | ||||
|                                                   dim_im_in + | ||||
|                                                   i_out_x * | ||||
|                                                   stride - padding) * ch_im_in, pBuffer, ch_im_in * dim_kernel); | ||||
|                 pBuffer += ch_im_in * dim_kernel; | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, | ||||
|                                                             bufferA, | ||||
|                                                             ch_im_out, | ||||
|                                                             ch_im_in | ||||
|                                                             * | ||||
|                                                             dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         /* right part */ | ||||
|         for (; i_out_x < dim_im_out; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_x < 0 || i_ker_x >= dim_im_in) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         arm_q7_to_q15_reordered_no_shift | ||||
|                             ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, | ||||
|                                                             bufferA, | ||||
|                                                             ch_im_out, | ||||
|                                                             ch_im_in | ||||
|                                                             * | ||||
|                                                             dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     for (; i_out_y < dim_im_out; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         arm_q7_to_q15_reordered_no_shift | ||||
|                             ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, | ||||
|                                                             bufferA, | ||||
|                                                             ch_im_out, | ||||
|                                                             ch_im_in | ||||
|                                                             * | ||||
|                                                             dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* check if there is left-over for compute */ | ||||
|     if (pBuffer != bufferA) | ||||
|     { | ||||
|         const q7_t *pA = wt; | ||||
|         int       i; | ||||
|  | ||||
|         for (i = 0; i < ch_im_out; i++) | ||||
|         { | ||||
|             q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|             q15_t    *pB = bufferA; | ||||
|             /* each time it process 4 entries */ | ||||
|             uint16_t  colCnt = ch_im_in * dim_kernel * dim_kernel >> 2; | ||||
|  | ||||
|             while (colCnt) | ||||
|             { | ||||
|  | ||||
|                 q31_t     inA1, inA2; | ||||
|                 q31_t     inB1, inB2; | ||||
|  | ||||
|                 pA = (q7_t *) read_and_pad_reordered((void *)pA, &inA1, &inA2); | ||||
|  | ||||
|                 inB1 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA1, inB1, sum); | ||||
|                 inB2 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA2, inB2, sum); | ||||
|  | ||||
|                 colCnt--; | ||||
|             } | ||||
|             colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3; | ||||
|             while (colCnt) | ||||
|             { | ||||
|                 q7_t      inA1 = *pA++; | ||||
|                 q15_t     inB1 = *pB++; | ||||
|                 sum += inA1 * inB1; | ||||
|                 colCnt--; | ||||
|             } | ||||
|             *pOut = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|             pOut++; | ||||
|  | ||||
|         } | ||||
|  | ||||
|     } | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|  | ||||
|     uint16_t  i, j, k, l, m, n; | ||||
|     int       conv_out; | ||||
|     signed char in_row, in_col; | ||||
|  | ||||
|     if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i = 0; i < ch_im_out; i++) | ||||
|     { | ||||
|         for (j = 0; j < dim_im_out; j++) | ||||
|         { | ||||
|             for (k = 0; k < dim_im_out; k++) | ||||
|             { | ||||
|                 conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (m = 0; m < dim_kernel; m++) | ||||
|                 { | ||||
|                     for (n = 0; n < dim_kernel; n++) | ||||
|                     { | ||||
|                         // if-for implementation | ||||
|                         in_row = stride * j + m - padding; | ||||
|                         in_col = stride * k + n - padding; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) | ||||
|                         { | ||||
|                             for (l = 0; l < ch_im_in; l++) | ||||
|                             { | ||||
|                                 conv_out += | ||||
|                                     Im_in[(in_row * dim_im_in + in_col) * ch_im_in + | ||||
|                                           l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + | ||||
|                                                                                             n) * ch_im_in + l]; | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,379 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_convolve_HWC_q7_fast_nonsquare.c | ||||
|  * Description:  Fast Q7 version of convolution (non-sqaure shape) | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @brief Fast Q7 convolution function (non-sqaure shape) | ||||
|  * @param[in]       Im_in        pointer to input tensor | ||||
|  * @param[in]       dim_im_in_x  input tensor dimention x | ||||
|  * @param[in]       dim_im_in_y  input tensor dimention y | ||||
|  * @param[in]       ch_im_in     number of input tensor channels | ||||
|  * @param[in]       wt           pointer to kernel weights | ||||
|  * @param[in]       ch_im_out    number of filters, i.e., output tensor channels | ||||
|  * @param[in]       dim_kernel_x filter kernel size x | ||||
|  * @param[in]       dim_kernel_y filter kernel size y | ||||
|  * @param[in]       padding_x    padding size x | ||||
|  * @param[in]       padding_y    padding size y | ||||
|  * @param[in]       stride_x     convolution stride x | ||||
|  * @param[in]       stride_y     convolution stride y | ||||
|  * @param[in]       bias         pointer to bias | ||||
|  * @param[in]       bias_shift   amount of left-shift for bias | ||||
|  * @param[in]       out_shift    amount of right-shift for output | ||||
|  * @param[in,out]   Im_out       pointer to output tensor | ||||
|  * @param[in]       dim_im_out_x output tensor dimension x | ||||
|  * @param[in]       dim_im_out_y output tensor dimension y | ||||
|  * @param[in,out]   bufferA      pointer to buffer space for input  | ||||
|  * @param[in,out]   bufferB      pointer to buffer space for output | ||||
|  * @return     The function returns either | ||||
|  * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
|  * | ||||
|  * This function is the version with full list of optimization tricks, but with | ||||
|  * some contraints: | ||||
|  *   ch_im_in is multiple of 4 | ||||
|  *   ch_im_out is multiple of 2 | ||||
|  */ | ||||
|  | ||||
| arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in, | ||||
|                                               const uint16_t dim_im_in_x, | ||||
|                                               const uint16_t dim_im_in_y, | ||||
|                                               const uint16_t ch_im_in, | ||||
|                                               const q7_t * wt, | ||||
|                                               const uint16_t ch_im_out, | ||||
|                                               const uint16_t dim_kernel_x, | ||||
|                                               const uint16_t dim_kernel_y, | ||||
|                                               const uint16_t padding_x, | ||||
|                                               const uint16_t padding_y, | ||||
|                                               const uint16_t stride_x, | ||||
|                                               const uint16_t stride_y, | ||||
|                                               const q7_t * bias, | ||||
|                                               const uint16_t bias_shift, | ||||
|                                               const uint16_t out_shift, | ||||
|                                               q7_t * Im_out, | ||||
|                                               const uint16_t dim_im_out_x, | ||||
|                                               const uint16_t dim_im_out_y,  | ||||
|                                               q15_t * bufferA,  | ||||
|                                               q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x; | ||||
|  | ||||
|     /* ----------------------- | ||||
|      *  Here we use bufferA as q15_t internally as computation are done with q15_t level | ||||
|      *  im2col are done to output in q15_t format from q7_t input | ||||
|      */ | ||||
|  | ||||
|     q15_t    *pBuffer = bufferA; | ||||
|     q7_t     *pOut = Im_out; | ||||
|  | ||||
|     if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     /* | ||||
|      *  Here we split the entire matrix into three regions depending on the padding situation | ||||
|      *    Top: i_out_y from 0 to padding - 1 | ||||
|      * Middle: i_out_y from padding to dim_im_out-padding-1 | ||||
|      * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1 | ||||
|      */ | ||||
|  | ||||
|     /* top part */ | ||||
|     for (i_out_y = 0; i_out_y < padding_y; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; | ||||
|                  i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; | ||||
|                      i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, | ||||
|                                                          pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, | ||||
|                                                   bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* middle part, here we also divide the x into left, mid and right */ | ||||
|     for (; i_out_y < dim_im_out_y - padding_y; i_out_y++) | ||||
|     { | ||||
|  | ||||
|         /* left part */ | ||||
|         for (i_out_x = 0; i_out_x < padding_x; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; | ||||
|                  i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; | ||||
|                      i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_x < 0 || i_ker_x >= dim_im_in_x) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, | ||||
|                                                          pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, | ||||
|                                                   bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         /* mid part */ | ||||
|         for (; i_out_x < dim_im_out_x - padding_x; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; | ||||
|                  i_ker_y++) | ||||
|             { | ||||
|                 arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + | ||||
|                                                  (i_ker_y * dim_im_in_x + i_out_x * stride_x - padding_x) * ch_im_in, | ||||
|                                                  pBuffer, ch_im_in * dim_kernel_x); | ||||
|                 pBuffer += ch_im_in * dim_kernel_x; | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, | ||||
|                                                   bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         /* right part */ | ||||
|         for (; i_out_x < dim_im_out_x; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; | ||||
|                  i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; | ||||
|                      i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_x < 0 || i_ker_x >= dim_im_in_x) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, | ||||
|                                                          pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, | ||||
|                                                   bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     for (; i_out_y < dim_im_out_y; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; | ||||
|                  i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; | ||||
|                      i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, | ||||
|                                                          pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, | ||||
|                                                   bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* check if there is left-over for compute */ | ||||
|     if (pBuffer != bufferA) | ||||
|     { | ||||
|         const q7_t *pA = wt; | ||||
|         int       i; | ||||
|         for (i = 0; i < ch_im_out; i++) | ||||
|         { | ||||
|             q31_t     sum = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); | ||||
|             q15_t    *pB = bufferA; | ||||
|             /* basically each time it process 4 entries */ | ||||
|             uint16_t  colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2; | ||||
|  | ||||
|             while (colCnt) | ||||
|             { | ||||
|  | ||||
|                 q31_t     inA1, inA2; | ||||
|                 q31_t     inB1, inB2; | ||||
|  | ||||
|                 pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2); | ||||
|  | ||||
|                 inB1 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA1, inB1, sum); | ||||
|                 inB2 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA2, inB2, sum); | ||||
|  | ||||
|                 colCnt--; | ||||
|             } | ||||
|             colCnt = (ch_im_in * dim_kernel_y * dim_kernel_x) & 0x3; | ||||
|             while (colCnt) | ||||
|             { | ||||
|                 q7_t      inA1 = *pA++; | ||||
|                 q15_t     inB1 = *pB++; | ||||
|                 sum += inA1 * inB1; | ||||
|                 colCnt--; | ||||
|             } | ||||
|             *pOut = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|             pOut++; | ||||
|  | ||||
|         } | ||||
|  | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     int       i, j, k, l, m, n; | ||||
|     int       conv_out; | ||||
|     int       in_row, in_col; | ||||
|  | ||||
|     if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i = 0; i < ch_im_out; i++) | ||||
|     { | ||||
|         for (j = 0; j < dim_im_out_y; j++) | ||||
|         { | ||||
|             for (k = 0; k < dim_im_out_x; k++) | ||||
|             { | ||||
|                 conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (m = 0; m < dim_kernel_y; m++) | ||||
|                 { | ||||
|                     for (n = 0; n < dim_kernel_x; n++) | ||||
|                     { | ||||
|                         /* if-for implementation */ | ||||
|                         in_row = stride_y * j + m - padding_y; | ||||
|                         in_col = stride_x * k + n - padding_x; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) | ||||
|                         { | ||||
|                             for (l = 0; l < ch_im_in; l++) | ||||
|                             { | ||||
|                                 conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] * | ||||
|                                     wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_x + n) * ch_im_in + l];       | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,418 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_depthwise_separable_conv_HWC_q7.c | ||||
|  * Description:  Q7 depthwise separable convolution function | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @brief Q7 depthwise separable convolution function | ||||
|  * @param[in]       Im_in       pointer to input tensor | ||||
|  * @param[in]       dim_im_in   input tensor dimention | ||||
|  * @param[in]       ch_im_in    number of input tensor channels | ||||
|  * @param[in]       wt          pointer to kernel weights | ||||
|  * @param[in]       ch_im_out   number of filters, i.e., output tensor channels | ||||
|  * @param[in]       dim_kernel  filter kernel size | ||||
|  * @param[in]       padding     padding sizes | ||||
|  * @param[in]       stride      convolution stride | ||||
|  * @param[in]       bias        pointer to bias | ||||
|  * @param[in]       bias_shift  amount of left-shift for bias | ||||
|  * @param[in]       out_shift   amount of right-shift for output | ||||
|  * @param[in,out]   Im_out      pointer to output tensor | ||||
|  * @param[in]       dim_im_out  output tensor dimension | ||||
|  * @param[in,out]   bufferA     pointer to buffer space for input | ||||
|  * @param[in,out]   bufferB     pointer to buffer space for output | ||||
|  * @return     The function returns either | ||||
|  * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
|  * | ||||
|  * @details | ||||
|  * | ||||
|  * <b>Buffer size:</b> | ||||
|  * | ||||
|  * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel | ||||
|  * | ||||
|  * bufferB size: 0 | ||||
|  * | ||||
|  * <b>Input dimension constraints:</b> | ||||
|  * | ||||
|  * ch_im_in equals ch_im_out | ||||
|  * | ||||
|  * Implementation: | ||||
|  * There are 3 nested loop here: | ||||
|  * Inner loop: calculate each output value with MAC instruction over an accumulator | ||||
|  * Mid   loop: loop over different output channel | ||||
|  * Outer loop: loop over different output (x, y) | ||||
|  */ | ||||
|  | ||||
| arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in, | ||||
|                                                const uint16_t dim_im_in, | ||||
|                                                const uint16_t ch_im_in, | ||||
|                                                const q7_t * wt, | ||||
|                                                const uint16_t ch_im_out, | ||||
|                                                const uint16_t dim_kernel, | ||||
|                                                const uint16_t padding, | ||||
|                                                const uint16_t stride, | ||||
|                                                const q7_t * bias, | ||||
|                                                const uint16_t bias_shift, | ||||
|                                                const uint16_t out_shift, | ||||
|                                                q7_t * Im_out,  | ||||
|                                                const uint16_t dim_im_out,  | ||||
|                                                q15_t * bufferA,  | ||||
|                                                q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     int16_t   i_out_y, i_out_x; | ||||
|     int16_t   i_ker_y, i_ker_x; | ||||
|     q7_t     *colBuffer = (q7_t *) bufferA; | ||||
|     q7_t     *pBuffer = colBuffer; | ||||
|     const q7_t *pBias = bias; | ||||
|     q7_t     *pOut = Im_out; | ||||
|     uint16_t  rowCnt; | ||||
|     uint16_t  row_shift; | ||||
|  | ||||
|     /* do some checking here, basically ch_im_in == ch_im_out */ | ||||
|     if (ch_im_in != ch_im_out) | ||||
|     { | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) | ||||
|         { | ||||
|             /* we first do im2col here */ | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) | ||||
|                     { | ||||
|                         /* arm_fill_q7(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         /* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ | ||||
|                         memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             /* we will do the computation here for each channel */ | ||||
|             rowCnt = ch_im_out >> 2; | ||||
|             row_shift = 0; | ||||
|             pBias = bias; | ||||
|  | ||||
|             while (rowCnt) | ||||
|             { | ||||
|                 q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|                 uint16_t  colCnt = (dim_kernel * dim_kernel) >> 1; | ||||
|                 q7_t     *pB = colBuffer + row_shift; | ||||
|                 const q7_t *pA = wt + row_shift; | ||||
|                 row_shift += 4; | ||||
|  | ||||
| #ifdef USE_INTRINSIC | ||||
|  | ||||
| #ifndef ARM_MATH_BIG_ENDIAN | ||||
|  | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     q31_t     inA1, inA2, inB1, inB2, opA, opB; | ||||
|  | ||||
|                     inB1 = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     opB = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     inB2 = __PKHTB(opB, inB1, 16); | ||||
|                     inB1 = __PKHBT(inB1, opB, 16); | ||||
|                     inA1 = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     opB = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     inA2 = __PKHTB(opB, inA1, 16); | ||||
|                     inA1 = __PKHBT(inA1, opB, 16); | ||||
|                     opA = __SXTB16(inA1); | ||||
|                     opB = __SXTB16(inB1); | ||||
|                     sum = __SMLAD(opA, opB, sum); | ||||
|                     opA = __SXTB16(__ROR(inA1, 8)); | ||||
|                     opB = __SXTB16(__ROR(inB1, 8)); | ||||
|                     sum2 = __SMLAD(opA, opB, sum2); | ||||
|                     opA = __SXTB16(inA2); | ||||
|                     opB = __SXTB16(inB2); | ||||
|                     sum3 = __SMLAD(opA, opB, sum3); | ||||
|                     opA = __SXTB16(__ROR(inA2, 8)); | ||||
|                     opB = __SXTB16(__ROR(inB2, 8)); | ||||
|                     sum4 = __SMLAD(opA, opB, sum4); | ||||
|                     colCnt--; | ||||
|                 } | ||||
| #else | ||||
|  | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     q31_t     inA1, inA2, inB1, inB2, opA, opB; | ||||
|  | ||||
|                     inB1 = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     opB = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     inB2 = __PKHBT(opB, inB1, 16); | ||||
|                     inB1 = __PKHTB(inB1, opB, 16); | ||||
|                     inA1 = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     opB = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     inA2 = __PKHBT(opB, inA1, 16); | ||||
|                     inA1 = __PKHTB(inA1, opB, 16); | ||||
|                     opA = __SXTB16(inA1); | ||||
|                     opB = __SXTB16(inB1); | ||||
|                     sum2 = __SMLAD(opA, opB, sum2); | ||||
|                     opA = __SXTB16(__ROR(inA1, 8)); | ||||
|                     opB = __SXTB16(__ROR(inB1, 8)); | ||||
|                     sum = __SMLAD(opA, opB, sum); | ||||
|                     opA = __SXTB16(inA2); | ||||
|                     opB = __SXTB16(inB2); | ||||
|                     sum4 = __SMLAD(opA, opB, sum4); | ||||
|                     opA = __SXTB16(__ROR(inA2, 8)); | ||||
|                     opB = __SXTB16(__ROR(inB2, 8)); | ||||
|                     sum3 = __SMLAD(opA, opB, sum3); | ||||
|                     colCnt--; | ||||
|                 } | ||||
|  | ||||
| #endif                          /* ARM_MATH_BIG_ENDIAN */ | ||||
|  | ||||
| #else | ||||
|  | ||||
| #ifndef ARM_MATH_BIG_ENDIAN | ||||
|                 /* | ||||
|                  *   r0    r1    r2    r3    r4   r5 | ||||
|                  *  inA1, inA2, inB1, inB2, opA, opB | ||||
|                  */ | ||||
|  | ||||
|                 asm volatile ("COL_LOOP_%=:\n" | ||||
|                               "ldr.w r2, [%[pB], #0]\n" | ||||
|                               "add.w %[pB], %[pB], %[ch_im_in]\n" | ||||
|                               "ldr.w r5, [%[pB], #0]\n" | ||||
|                               "add.w %[pB], %[pB], %[ch_im_in]\n" | ||||
|                               "pkhtb r3, r5, r2, ASR #16\n" | ||||
|                               "pkhbt r2, r2, r5, LSL #16\n" | ||||
|                               "ldr.w r0, [%[pA], #0]\n" | ||||
|                               "add.w %[pA], %[pA], %[ch_im_in]\n" | ||||
|                               "ldr.w r5, [%[pA], #0]\n" | ||||
|                               "add.w %[pA], %[pA], %[ch_im_in]\n" | ||||
|                               "pkhtb r1, r5, r0, ASR #16\n" | ||||
|                               "pkhbt r0, r0, r5, LSL #16\n" | ||||
|                               "sxtb16 r4, r0\n" | ||||
|                               "sxtb16 r5, r2\n" | ||||
|                               "smlad %[sum], r4, r5, %[sum]\n" | ||||
|                               "mov.w r4, r0, ror #8\n" | ||||
|                               "mov.w r5, r2, ror #8\n" | ||||
|                               "sxtb16 r4, r4\n" | ||||
|                               "sxtb16 r5, r5\n" | ||||
|                               "smlad %[sum2], r4, r5, %[sum2]\n" | ||||
|                               "sxtb16 r4, r1\n" | ||||
|                               "sxtb16 r5, r3\n" | ||||
|                               "smlad %[sum3], r4, r5, %[sum3]\n" | ||||
|                               "mov.w r4, r1, ror #8\n" | ||||
|                               "mov.w r5, r3, ror #8\n" | ||||
|                               "sxtb16 r4, r4\n" | ||||
|                               "sxtb16 r5, r5\n" | ||||
|                               "smlad %[sum4], r4, r5, %[sum4]\n" | ||||
|                               "subs %[colCnt], #1\n" | ||||
|                               "bne COL_LOOP_%=\n":[sum] | ||||
|                               "+r"(sum),[sum2] "+r"(sum2), | ||||
|                               [sum3] "+r"(sum3), | ||||
|                               [sum4] "+r"(sum4),[pB] "+r"(pB), | ||||
|                               [pA] "+r"(pA):[colCnt] | ||||
|                               "r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); | ||||
| #else | ||||
|                 /* | ||||
|                  *  r0    r1    r2    r3    r4   r5 | ||||
|                  * inA1, inA2, inB1, inB2, opA, opB | ||||
|                  */ | ||||
|                 asm volatile ("COL_LOOP_%=:\n" | ||||
|                               "ldr.w r2, [%[pB], #0]\n" | ||||
|                               "add.w %[pB], %[pB], %[ch_im_in]\n" | ||||
|                               "ldr.w r5, [%[pB], #0]\n" | ||||
|                               "add.w %[pB], %[pB], %[ch_im_in]\n" | ||||
|                               "pkhbt r3, r5, r2, LSL #16\n" | ||||
|                               "pkhtb r2, r2, r5, ASR #16\n" | ||||
|                               "ldr.w r0, [%[pA], #0]\n" | ||||
|                               "add.w %[pA], %[pA], %[ch_im_in]\n" | ||||
|                               "ldr.w r5, [%[pA], #0]\n" | ||||
|                               "add.w %[pA], %[pA], %[ch_im_in]\n" | ||||
|                               "pkhbt r1, r5, r0, LSL #16\n" | ||||
|                               "pkhtb r0, r0, r5, ASR #16\n" | ||||
|                               "sxtb16 r4, r0\n" | ||||
|                               "sxtb16 r5, r2\n" | ||||
|                               "smlad %[sum2], r4, r5, %[sum2]\n" | ||||
|                               "mov.w r4, r0, ror #8\n" | ||||
|                               "mov.w r5, r2, ror #8\n" | ||||
|                               "sxtb16 r4, r4\n" | ||||
|                               "sxtb16 r5, r5\n" | ||||
|                               "smlad %[sum], r4, r5, %[sum]\n" | ||||
|                               "sxtb16 r4, r1\n" | ||||
|                               "sxtb16 r5, r3\n" | ||||
|                               "smlad %[sum4], r4, r5, %[sum4]\n" | ||||
|                               "mov.w r4, r1, ror #8\n" | ||||
|                               "mov.w r5, r3, ror #8\n" | ||||
|                               "sxtb16 r4, r4\n" | ||||
|                               "sxtb16 r5, r5\n" | ||||
|                               "smlad %[sum3], r4, r5, %[sum3]\n" | ||||
|                               "subs %[colCnt], #1\n" | ||||
|                               "bne COL_LOOP_%=\n":[sum] | ||||
|                               "+r"(sum),[sum2] "+r"(sum2), | ||||
|                               [sum3] "+r"(sum3), | ||||
|                               [sum4] "+r"(sum4),[pB] "+r"(pB), | ||||
|                               [pA] "+r"(pA):[colCnt] | ||||
|                               "r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); | ||||
|  | ||||
| #endif                          /* ARM_MATH_BIG_ENDIAN */ | ||||
|  | ||||
| #endif                          /* USE_INTRINSIC */ | ||||
|  | ||||
|                 colCnt = (dim_kernel * dim_kernel) & 0x1; | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     union arm_nnword inA, inB; | ||||
|                     inA.word = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     inB.word = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     sum += inA.bytes[0] * inB.bytes[0]; | ||||
|                     sum2 += inA.bytes[1] * inB.bytes[1]; | ||||
|                     sum3 += inA.bytes[2] * inB.bytes[2]; | ||||
|                     sum4 += inA.bytes[3] * inB.bytes[3]; | ||||
|                     colCnt--; | ||||
|                 } | ||||
|  | ||||
|                 *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|                 *pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8); | ||||
|                 *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8); | ||||
|                 *pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8); | ||||
|  | ||||
|                 rowCnt--; | ||||
|             } | ||||
|  | ||||
|             rowCnt = ch_im_out & 0x3; | ||||
|             while (rowCnt) | ||||
|             { | ||||
|                 q7_t     *pB = colBuffer + row_shift; | ||||
|                 const q7_t *pA = wt + row_shift; | ||||
|                 q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 uint16_t  colCnt = (dim_kernel * dim_kernel); | ||||
|  | ||||
|                 row_shift += 1; | ||||
|  | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     q7_t      A1 = *pA; | ||||
|                     q7_t      B1 = *pB; | ||||
|                     pA += ch_im_in; | ||||
|                     pB += ch_im_in; | ||||
|                     sum += A1 * B1; | ||||
|  | ||||
|                     colCnt--; | ||||
|                 } | ||||
|                 *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|                 rowCnt--; | ||||
|             } | ||||
|  | ||||
|             /* clear counter and pointers */ | ||||
|             pBuffer = colBuffer; | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     int       i_out_y, i_out_x, i_ch_out, i_ker_x, i_ker_y; | ||||
|     int       conv_out; | ||||
|  | ||||
|     /* do some checking here, basically ch_im_in == ch_im_out */ | ||||
|     if (ch_im_in != ch_im_out) | ||||
|     { | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) | ||||
|         { | ||||
|             for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++) | ||||
|             { | ||||
|                 // for each output | ||||
|                 conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (i_ker_y = 0; i_ker_y < dim_kernel; i_ker_y++) | ||||
|                 { | ||||
|                     for (i_ker_x = 0; i_ker_x < dim_kernel; i_ker_x++) | ||||
|                     { | ||||
|                         int       in_row = stride * i_out_y + i_ker_y - padding; | ||||
|                         int       in_col = stride * i_out_x + i_ker_x - padding; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) | ||||
|                         { | ||||
|                             conv_out += | ||||
|                                 Im_in[(in_row * | ||||
|                                        dim_im_in + | ||||
|                                        in_col) * | ||||
|                                       ch_im_in + | ||||
|                                       i_ch_out] * wt[(i_ker_y * dim_kernel + i_ker_x) * ch_im_out + i_ch_out]; | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[(i_out_y * dim_im_out + | ||||
|                         i_out_x) * ch_im_out + i_ch_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
|  | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,411 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_depthwise_separable_conv_HWC_q7_nonsquare.c | ||||
|  * Description:  Q7 depthwise separable convolution function (non-square shape) | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @brief Q7 depthwise separable convolution function (non-square shape) | ||||
|  * @param[in]       Im_in         pointer to input tensor | ||||
|  * @param[in]       dim_im_in_x   input tensor dimention x | ||||
|  * @param[in]       dim_im_in_y   input tensor dimention y | ||||
|  * @param[in]       ch_im_in      number of input tensor channels | ||||
|  * @param[in]       wt            pointer to kernel weights | ||||
|  * @param[in]       ch_im_out     number of filters, i.e., output tensor channels | ||||
|  * @param[in]       dim_kernel_x  filter kernel size x | ||||
|  * @param[in]       dim_kernel_y  filter kernel size y | ||||
|  * @param[in]       padding_x     padding sizes x | ||||
|  * @param[in]       padding_y     padding sizes y | ||||
|  * @param[in]       stride_x      convolution stride x | ||||
|  * @param[in]       stride_y      convolution stride y | ||||
|  * @param[in]       bias          pointer to bias | ||||
|  * @param[in]       bias_shift    amount of left-shift for bias | ||||
|  * @param[in]       out_shift     amount of right-shift for output | ||||
|  * @param[in,out]   Im_out        pointer to output tensor | ||||
|  * @param[in]       dim_im_out_x  output tensor dimension x | ||||
|  * @param[in]       dim_im_out_y  output tensor dimension y | ||||
|  * @param[in,out]   bufferA       pointer to buffer space for input  | ||||
|  * @param[in,out]   bufferB       pointer to buffer space for output | ||||
|  * @return     The function returns either | ||||
|  * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
|  * | ||||
|  * This function is the version with full list of optimization tricks, but with | ||||
|  * some contraints: | ||||
|  *   ch_im_in is multiple of 2 | ||||
|  *   ch_im_out is multiple of 2 | ||||
|  */ | ||||
|  | ||||
| arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in, | ||||
|                                                          const uint16_t dim_im_in_x, | ||||
|                                                          const uint16_t dim_im_in_y, | ||||
|                                                          const uint16_t ch_im_in, | ||||
|                                                          const q7_t * wt, | ||||
|                                                          const uint16_t ch_im_out, | ||||
|                                                          const uint16_t dim_kernel_x, | ||||
|                                                          const uint16_t dim_kernel_y, | ||||
|                                                          const uint16_t padding_x, | ||||
|                                                          const uint16_t padding_y, | ||||
|                                                          const uint16_t stride_x, | ||||
|                                                          const uint16_t stride_y, | ||||
|                                                          const q7_t * bias, | ||||
|                                                          const uint16_t bias_shift, | ||||
|                                                          const uint16_t out_shift, | ||||
|                                                          q7_t * Im_out, | ||||
|                                                          const uint16_t dim_im_out_x, | ||||
|                                                          const uint16_t dim_im_out_y,  | ||||
|                                                          q15_t * bufferA,  | ||||
|                                                          q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
| /* | ||||
|  * Implementation: | ||||
|  * There are 3 nested loop here: | ||||
|  * Inner loop: calculate each output value with MAC instruction over an accumulator | ||||
|  * Mid   loop: loop over different output channel | ||||
|  * Outer loop: loop over different output (x, y) | ||||
|  * | ||||
|  */ | ||||
|  | ||||
|     int16_t   i_out_y, i_out_x; | ||||
|     int16_t   i_ker_y, i_ker_x; | ||||
|     q7_t     *colBuffer = (q7_t *) bufferA; | ||||
|     q7_t     *pBuffer = colBuffer; | ||||
|     const q7_t *pBias = bias; | ||||
|     q7_t     *pOut = Im_out; | ||||
|     uint16_t  rowCnt; | ||||
|     uint16_t  row_shift; | ||||
|  | ||||
|     /* do some checking here, basically ch_im_in == ch_im_out */ | ||||
|     if (ch_im_in != ch_im_out) | ||||
|     { | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) | ||||
|         { | ||||
|             /* we first do im2col here */ | ||||
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; | ||||
|                  i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; | ||||
|                      i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) | ||||
|                     { | ||||
|                         /* arm_fill_q7(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         /* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ | ||||
|                         memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             /* we will do the computation here for each channel */ | ||||
|             rowCnt = ch_im_out >> 2; | ||||
|             row_shift = 0; | ||||
|             pBias = bias; | ||||
|  | ||||
|             while (rowCnt) | ||||
|             { | ||||
|                 q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|                 uint16_t  colCnt = (dim_kernel_x * dim_kernel_y) >> 1; | ||||
|                 q7_t     *pB = colBuffer + row_shift; | ||||
|                 const q7_t *pA = wt + row_shift; | ||||
|                 row_shift += 4; | ||||
|  | ||||
| #ifdef USE_INTRINSIC | ||||
|  | ||||
| #ifndef ARM_MATH_BIG_ENDIAN | ||||
|  | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     q31_t     inA1, inA2, inB1, inB2, opA, opB; | ||||
|  | ||||
|                     inB1 = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     opB = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     inB2 = __PKHTB(opB, inB1, 16); | ||||
|                     inB1 = __PKHBT(inB1, opB, 16); | ||||
|                     inA1 = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     opB = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     inA2 = __PKHTB(opB, inA1, 16); | ||||
|                     inA1 = __PKHBT(inA1, opB, 16); | ||||
|                     opA = __SXTB16(inA1); | ||||
|                     opB = __SXTB16(inB1); | ||||
|                     sum = __SMLAD(opA, opB, sum); | ||||
|                     opA = __SXTB16(__ROR(inA1, 8)); | ||||
|                     opB = __SXTB16(__ROR(inB1, 8)); | ||||
|                     sum2 = __SMLAD(opA, opB, sum2); | ||||
|                     opA = __SXTB16(inA2); | ||||
|                     opB = __SXTB16(inB2); | ||||
|                     sum3 = __SMLAD(opA, opB, sum3); | ||||
|                     opA = __SXTB16(__ROR(inA2, 8)); | ||||
|                     opB = __SXTB16(__ROR(inB2, 8)); | ||||
|                     sum4 = __SMLAD(opA, opB, sum4); | ||||
|                     colCnt--; | ||||
|                 } | ||||
| #else | ||||
|  | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     q31_t     inA1, inA2, inB1, inB2, opA, opB; | ||||
|  | ||||
|                     inB1 = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     opB = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     inB2 = __PKHBT(opB, inB1, 16); | ||||
|                     inB1 = __PKHTB(inB1, opB, 16); | ||||
|                     inA1 = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     opB = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     inA2 = __PKHBT(opB, inA1, 16); | ||||
|                     inA1 = __PKHTB(inA1, opB, 16); | ||||
|                     opA = __SXTB16(inA1); | ||||
|                     opB = __SXTB16(inB1); | ||||
|                     sum2 = __SMLAD(opA, opB, sum2); | ||||
|                     opA = __SXTB16(__ROR(inA1, 8)); | ||||
|                     opB = __SXTB16(__ROR(inB1, 8)); | ||||
|                     sum = __SMLAD(opA, opB, sum); | ||||
|                     opA = __SXTB16(inA2); | ||||
|                     opB = __SXTB16(inB2); | ||||
|                     sum4 = __SMLAD(opA, opB, sum4); | ||||
|                     opA = __SXTB16(__ROR(inA2, 8)); | ||||
|                     opB = __SXTB16(__ROR(inB2, 8)); | ||||
|                     sum3 = __SMLAD(opA, opB, sum3); | ||||
|                     colCnt--; | ||||
|                 } | ||||
|  | ||||
| #endif                          /* ARM_MATH_BIG_ENDIAN */ | ||||
|  | ||||
| #else | ||||
|  | ||||
| #ifndef ARM_MATH_BIG_ENDIAN | ||||
|                 //  r0    r1    r2    r3    r4   r5 | ||||
|                 // inA1, inA2, inB1, inB2, opA, opB | ||||
|                 asm volatile ("COL_LOOP:\n" | ||||
|                               "ldr.w r2, [%[pB], #0]\n" | ||||
|                               "add.w %[pB], %[pB], %[ch_im_in]\n" | ||||
|                               "ldr.w r5, [%[pB], #0]\n" | ||||
|                               "add.w %[pB], %[pB], %[ch_im_in]\n" | ||||
|                               "pkhtb r3, r5, r2, ASR #16\n" | ||||
|                               "pkhbt r2, r2, r5, LSL #16\n" | ||||
|                               "ldr.w r0, [%[pA], #0]\n" | ||||
|                               "add.w %[pA], %[pA], %[ch_im_in]\n" | ||||
|                               "ldr.w r5, [%[pA], #0]\n" | ||||
|                               "add.w %[pA], %[pA], %[ch_im_in]\n" | ||||
|                               "pkhtb r1, r5, r0, ASR #16\n" | ||||
|                               "pkhbt r0, r0, r5, LSL #16\n" | ||||
|                               "sxtb16 r4, r0\n" | ||||
|                               "sxtb16 r5, r2\n" | ||||
|                               "smlad %[sum], r4, r5, %[sum]\n" | ||||
|                               "mov.w r4, r0, ror #8\n" | ||||
|                               "mov.w r5, r2, ror #8\n" | ||||
|                               "sxtb16 r4, r4\n" | ||||
|                               "sxtb16 r5, r5\n" | ||||
|                               "smlad %[sum2], r4, r5, %[sum2]\n" | ||||
|                               "sxtb16 r4, r1\n" | ||||
|                               "sxtb16 r5, r3\n" | ||||
|                               "smlad %[sum3], r4, r5, %[sum3]\n" | ||||
|                               "mov.w r4, r1, ror #8\n" | ||||
|                               "mov.w r5, r3, ror #8\n" | ||||
|                               "sxtb16 r4, r4\n" | ||||
|                               "sxtb16 r5, r5\n" | ||||
|                               "smlad %[sum4], r4, r5, %[sum4]\n" | ||||
|                               "subs %[colCnt], #1\n" | ||||
|                               "bne COL_LOOP\n":[sum] "+r"(sum),[sum2] "+r"(sum2),[sum3] "+r"(sum3), | ||||
|                               [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt), | ||||
|                               [ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); | ||||
| #else | ||||
|                 //  r0    r1    r2    r3    r4   r5 | ||||
|                 // inA1, inA2, inB1, inB2, opA, opB | ||||
|                 asm volatile ("COL_LOOP:\n" | ||||
|                               "ldr.w r2, [%[pB], #0]\n" | ||||
|                               "add.w %[pB], %[pB], %[ch_im_in]\n" | ||||
|                               "ldr.w r5, [%[pB], #0]\n" | ||||
|                               "add.w %[pB], %[pB], %[ch_im_in]\n" | ||||
|                               "pkhbt r3, r5, r2, LSL #16\n" | ||||
|                               "pkhtb r2, r2, r5, ASR #16\n" | ||||
|                               "ldr.w r0, [%[pA], #0]\n" | ||||
|                               "add.w %[pA], %[pA], %[ch_im_in]\n" | ||||
|                               "ldr.w r5, [%[pA], #0]\n" | ||||
|                               "add.w %[pA], %[pA], %[ch_im_in]\n" | ||||
|                               "pkhbt r1, r5, r0, LSL #16\n" | ||||
|                               "pkhtb r0, r0, r5, ASR #16\n" | ||||
|                               "sxtb16 r4, r0\n" | ||||
|                               "sxtb16 r5, r2\n" | ||||
|                               "smlad %[sum2], r4, r5, %[sum2]\n" | ||||
|                               "mov.w r4, r0, ror #8\n" | ||||
|                               "mov.w r5, r2, ror #8\n" | ||||
|                               "sxtb16 r4, r4\n" | ||||
|                               "sxtb16 r5, r5\n" | ||||
|                               "smlad %[sum], r4, r5, %[sum]\n" | ||||
|                               "sxtb16 r4, r1\n" | ||||
|                               "sxtb16 r5, r3\n" | ||||
|                               "smlad %[sum4], r4, r5, %[sum4]\n" | ||||
|                               "mov.w r4, r1, ror #8\n" | ||||
|                               "mov.w r5, r3, ror #8\n" | ||||
|                               "sxtb16 r4, r4\n" | ||||
|                               "sxtb16 r5, r5\n" | ||||
|                               "smlad %[sum3], r4, r5, %[sum3]\n" | ||||
|                               "subs %[colCnt], #1\n" | ||||
|                               "bne COL_LOOP\n":[sum] "+r"(sum),[sum2] "+r"(sum2),[sum3] "+r"(sum3), | ||||
|                               [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt), | ||||
|                               [ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); | ||||
| #endif                          /*ARM_MATH_BIG_ENDIAN */ | ||||
|  | ||||
| #endif                          /* USE_INTRINSIC */ | ||||
|  | ||||
|                 colCnt = (dim_kernel_x * dim_kernel_y) & 0x1; | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     union arm_nnword inA, inB; | ||||
|                     inA.word = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     inB.word = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     sum += inA.bytes[0] * inB.bytes[0]; | ||||
|                     sum2 += inA.bytes[1] * inB.bytes[1]; | ||||
|                     sum3 += inA.bytes[2] * inB.bytes[2]; | ||||
|                     sum4 += inA.bytes[3] * inB.bytes[3]; | ||||
|                     colCnt--; | ||||
|                 } | ||||
|  | ||||
|                 *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|                 *pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8); | ||||
|                 *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8); | ||||
|                 *pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8); | ||||
|  | ||||
|                 rowCnt--; | ||||
|             } | ||||
|  | ||||
|             rowCnt = ch_im_out & 0x3; | ||||
|             while (rowCnt) | ||||
|             { | ||||
|                 q7_t     *pB = colBuffer + row_shift; | ||||
|                 const q7_t *pA = wt + row_shift; | ||||
|                 q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 uint16_t  colCnt = (dim_kernel_x * dim_kernel_y); | ||||
|  | ||||
|                 row_shift += 1; | ||||
|  | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     q7_t      A1 = *pA; | ||||
|                     q7_t      B1 = *pB; | ||||
|                     pA += ch_im_in; | ||||
|                     pB += ch_im_in; | ||||
|                     sum += A1 * B1; | ||||
|  | ||||
|                     colCnt--; | ||||
|                 } | ||||
|                 *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|                 rowCnt--; | ||||
|             } | ||||
|  | ||||
|             // clear counter and pointers | ||||
|             pBuffer = colBuffer; | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     int       i_out_y, i_out_x, i_ch_out; | ||||
|     int       i_ker_y, i_ker_x;  | ||||
|  | ||||
|     /* do some checking here, basically ch_im_in == ch_im_out */ | ||||
|     if (ch_im_in != ch_im_out) | ||||
|     { | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) | ||||
|         { | ||||
|             for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++) | ||||
|             { | ||||
|                 // for each output  | ||||
|                 int       conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (i_ker_y = 0; i_ker_y < dim_kernel_y; i_ker_y++) | ||||
|                 { | ||||
|                     for (i_ker_x = 0; i_ker_x < dim_kernel_x; i_ker_x++) | ||||
|                     { | ||||
|                         int       in_row = stride_y * i_out_y + i_ker_y - padding_y; | ||||
|                         int       in_col = stride_x * i_out_x + i_ker_x - padding_x; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) | ||||
|                         { | ||||
|                             conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + i_ch_out] *                         | ||||
|                                 wt[(i_ker_y * dim_kernel_x + i_ker_x) * ch_im_out + i_ch_out]; | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[(i_out_y * dim_im_out_x + i_out_x) * ch_im_out + i_ch_out] = | ||||
|                     (q7_t) __SSAT((conv_out >> out_shift), 8); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
|  | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,187 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_nn_mat_mult_kernel_q7_q15.c | ||||
|  * Description:  Matrix-multiplication function for convolution | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
|   /** | ||||
|    * @brief Matrix-multiplication function for convolution | ||||
|    * @param[in]       pA          pointer to operand A | ||||
|    * @param[in]       pInBuffer   pointer to operand B, always conssists of 2 vectors | ||||
|    * @param[in]       ch_im_out   numRow of A | ||||
|    * @param[in]       numCol_A    numCol of A | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in]       bias        the bias | ||||
|    * @param[in,out]   pOut        pointer to output | ||||
|    * @return     The function returns the incremented output pointer | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * This function does the matrix multiplication with weight matrix | ||||
|    * and 2 columns from im2col.  | ||||
|    */ | ||||
|  | ||||
| q7_t     *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA, | ||||
|                                         const q15_t * pInBuffer, | ||||
|                                         const uint16_t ch_im_out, | ||||
|                                         const uint16_t numCol_A, | ||||
|                                         const uint16_t bias_shift, | ||||
|                                         const uint16_t out_shift,  | ||||
|                                         const q7_t * bias,  | ||||
|                                         q7_t * pOut) | ||||
| { | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* set up the second output pointers */ | ||||
|     q7_t     *pOut2 = pOut + ch_im_out; | ||||
|     const q7_t *pBias = bias; | ||||
|  | ||||
|     uint16_t  rowCnt = ch_im_out >> 1; | ||||
|     /* this loop over rows in A */ | ||||
|     while (rowCnt) | ||||
|     { | ||||
|         /* setup pointers for B */ | ||||
|         const q15_t *pB = pInBuffer; | ||||
|         const q15_t *pB2 = pB + numCol_A; | ||||
|  | ||||
|         /* align the second pointer for A */ | ||||
|         const q7_t *pA2 = pA + numCol_A; | ||||
|  | ||||
|         /* init the sum with bias */ | ||||
|         q31_t     sum =  ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum3 = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|         uint16_t  colCnt = numCol_A >> 2; | ||||
|         /* accumulate over the vector */ | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inA11, inA12, inA21, inA22; | ||||
|             q31_t     inB1 = *__SIMD32(pB)++; | ||||
|             q31_t     inB2 = *__SIMD32(pB2)++; | ||||
|  | ||||
|             pA = (q7_t *) read_and_pad((void *)pA, &inA11, &inA12); | ||||
|             pA2 = (q7_t *) read_and_pad((void *)pA2, &inA21, &inA22); | ||||
|  | ||||
|             sum = __SMLAD(inA11, inB1, sum); | ||||
|             sum2 = __SMLAD(inA11, inB2, sum2); | ||||
|             sum3 = __SMLAD(inA21, inB1, sum3); | ||||
|             sum4 = __SMLAD(inA21, inB2, sum4); | ||||
|  | ||||
|             inB1 = *__SIMD32(pB)++; | ||||
|             inB2 = *__SIMD32(pB2)++; | ||||
|  | ||||
|             sum = __SMLAD(inA12, inB1, sum); | ||||
|             sum2 = __SMLAD(inA12, inB2, sum2); | ||||
|             sum3 = __SMLAD(inA22, inB1, sum3); | ||||
|             sum4 = __SMLAD(inA22, inB2, sum4); | ||||
|  | ||||
|             colCnt--; | ||||
|         }                       /* while over colCnt */ | ||||
|         colCnt = numCol_A & 0x3; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q7_t      inA1 = *pA++; | ||||
|             q15_t     inB1 = *pB++; | ||||
|             q7_t      inA2 = *pA2++; | ||||
|             q15_t     inB2 = *pB2++; | ||||
|  | ||||
|             sum += inA1 * inB1; | ||||
|             sum2 += inA1 * inB2; | ||||
|             sum3 += inA2 * inB1; | ||||
|             sum4 += inA2 * inB2; | ||||
|             colCnt--; | ||||
|         }                       /* while over colCnt */ | ||||
|         *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|         *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8); | ||||
|         *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8); | ||||
|         *pOut2++ = (q7_t) __SSAT((sum4 >> out_shift), 8); | ||||
|  | ||||
|         /* skip the row computed with A2 */ | ||||
|         pA += numCol_A; | ||||
|         rowCnt--; | ||||
|     }                           /* for over ch_im_out */ | ||||
|  | ||||
|     /* compute left-over row if any */ | ||||
|     if (ch_im_out & 0x1) | ||||
|     { | ||||
|         /* setup pointers for B */ | ||||
|         const q15_t *pB = pInBuffer; | ||||
|         const q15_t *pB2 = pB + numCol_A; | ||||
|  | ||||
|         /* load the bias */ | ||||
|         q31_t     sum = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|         uint16_t  colCnt = numCol_A >> 2; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inA11, inA12; | ||||
|             q31_t     inB1 = *__SIMD32(pB)++; | ||||
|             q31_t     inB2 = *__SIMD32(pB2)++; | ||||
|  | ||||
|             pA = (q7_t *) read_and_pad((void *)pA, &inA11, &inA12); | ||||
|  | ||||
|             sum = __SMLAD(inA11, inB1, sum); | ||||
|             sum2 = __SMLAD(inA11, inB2, sum2); | ||||
|  | ||||
|             inB1 = *__SIMD32(pB)++; | ||||
|             inB2 = *__SIMD32(pB2)++; | ||||
|             sum = __SMLAD(inA12, inB1, sum); | ||||
|             sum2 = __SMLAD(inA12, inB2, sum2); | ||||
|  | ||||
|             colCnt--; | ||||
|         } | ||||
|         colCnt = numCol_A & 0x3; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q7_t      inA1 = *pA++; | ||||
|             q15_t     inB1 = *pB++; | ||||
|             q15_t     inB2 = *pB2++; | ||||
|  | ||||
|             sum += inA1 * inB1; | ||||
|             sum2 += inA1 * inB2; | ||||
|             colCnt--; | ||||
|         } | ||||
|  | ||||
|         *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|         *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8); | ||||
|     } | ||||
|  | ||||
|     pOut += ch_im_out; | ||||
|  | ||||
|     /* return the new output pointer with offset */ | ||||
|     return pOut; | ||||
| #else | ||||
|     /* To be completed */ | ||||
|     return NULL; | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
| } | ||||
| @@ -0,0 +1,138 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_nn_mat_mult_kernel_q7_q15_reordered.c | ||||
|  * Description:  Matrix-multiplication function for convolution with reordered columns | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_nnfunctions.h" | ||||
| #include "arm_math.h" | ||||
|  | ||||
|   /** | ||||
|    * @brief Matrix-multiplication function for convolution with reordered columns | ||||
|    * @param[in]       pA          pointer to operand A | ||||
|    * @param[in]       pInBuffer   pointer to operand B, always conssists of 2 vectors | ||||
|    * @param[in]       ch_im_out   numRow of A | ||||
|    * @param[in]       numCol_A    numCol of A | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in]       bias        the bias | ||||
|    * @param[in,out]   pOut        pointer to output | ||||
|    * @return     The function returns the incremented output pointer | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * This function assumes that data in pInBuffer are reordered | ||||
|    */ | ||||
|  | ||||
| q7_t     *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA, | ||||
|                                                   const q15_t * pInBuffer, | ||||
|                                                   const uint16_t ch_im_out, | ||||
|                                                   const uint16_t numCol_A, | ||||
|                                                   const uint16_t bias_shift, | ||||
|                                                   const uint16_t out_shift,  | ||||
|                                                   const q7_t * bias,  | ||||
|                                                   q7_t * pOut) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* set up the second output pointers */ | ||||
|     q7_t     *pOut2 = pOut + ch_im_out; | ||||
|     int       i; | ||||
|  | ||||
|     /* this loop over rows in A */ | ||||
|     for (i = 0; i < ch_im_out; i += 2) | ||||
|     { | ||||
|         /* setup pointers for B */ | ||||
|         const q15_t *pB = pInBuffer; | ||||
|         const q15_t *pB2 = pB + numCol_A; | ||||
|  | ||||
|         /* align the second pointer for A */ | ||||
|         const q7_t *pA2 = pA + numCol_A; | ||||
|  | ||||
|         /* init the sum with bias */ | ||||
|         q31_t     sum =  ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum2 = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum3 = ((q31_t)(bias[i + 1]) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum4 = ((q31_t)(bias[i + 1]) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|         uint16_t  colCnt = numCol_A >> 2; | ||||
|         /* accumulate over the vector */ | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inA11, inA12, inA21, inA22; | ||||
|             q31_t     inB1 = *__SIMD32(pB)++; | ||||
|             q31_t     inB2 = *__SIMD32(pB2)++; | ||||
|  | ||||
|             pA = (q7_t *) read_and_pad_reordered((void *)pA, &inA11, &inA12); | ||||
|             pA2 = (q7_t *) read_and_pad_reordered((void *)pA2, &inA21, &inA22); | ||||
|  | ||||
|             sum = __SMLAD(inA11, inB1, sum); | ||||
|             sum2 = __SMLAD(inA11, inB2, sum2); | ||||
|             sum3 = __SMLAD(inA21, inB1, sum3); | ||||
|             sum4 = __SMLAD(inA21, inB2, sum4); | ||||
|  | ||||
|             inB1 = *__SIMD32(pB)++; | ||||
|             inB2 = *__SIMD32(pB2)++; | ||||
|  | ||||
|             sum = __SMLAD(inA12, inB1, sum); | ||||
|             sum2 = __SMLAD(inA12, inB2, sum2); | ||||
|             sum3 = __SMLAD(inA22, inB1, sum3); | ||||
|             sum4 = __SMLAD(inA22, inB2, sum4); | ||||
|  | ||||
|             colCnt--; | ||||
|         }                       /* while over colCnt */ | ||||
|         colCnt = numCol_A & 0x3; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q7_t      inA1 = *pA++; | ||||
|             q15_t     inB1 = *pB++; | ||||
|             q7_t      inA2 = *pA2++; | ||||
|             q15_t     inB2 = *pB2++; | ||||
|  | ||||
|             sum += inA1 * inB1; | ||||
|             sum2 += inA1 * inB2; | ||||
|             sum3 += inA2 * inB1; | ||||
|             sum4 += inA2 * inB2; | ||||
|             colCnt--; | ||||
|         }                       /* while over colCnt */ | ||||
|         *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|         *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8); | ||||
|         *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8); | ||||
|         *pOut2++ = (q7_t) __SSAT((sum4 >> out_shift), 8); | ||||
|  | ||||
|         /* skip the row computed with A2 */ | ||||
|         pA += numCol_A; | ||||
|     }                           /* for over ch_im_out */ | ||||
|  | ||||
|     pOut += ch_im_out; | ||||
|  | ||||
|     /* return the new output pointer with offset */ | ||||
|     return pOut; | ||||
| #else | ||||
|     /* To be completed */ | ||||
|     return NULL; | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
| } | ||||
		Reference in New Issue
	
	Block a user